
  

Lecture 24:
Unsolvable Problems

CS103CS103

Winter 2025Winter 2025

Part 2 of 2



  

Outline for Today
● More on Undecidability

● Even more problems we can’t solve.
● A Different Perspective on RE

● What exactly does “recognizability” mean?
● Verifiers

● A new approach to problem-solving.
● Beyond RE

● A beautiful example of an impossible problem.



  

Recap from Last Time



  

bool willAccept(string function, string input) {
   // Returns true if function(input) returns true.
   // Returns false otherwise.
}
 

bool trickster(string input) {
string me = /* source code of trickster */;

  return !willAccept(me, input);
}

trickster willAccept

Which of the following must be true?

(1) trickster is a decider for ATM.
 
 (2) willAccept is a decider for ATM.
 

(3) willAccept(me, input) simulates
          trickster on input and does

whatever trickster does to input.
 

(4) trickster loops on at least one
input.

Answer at https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev


  

bool willAccept(string function, string input) {
   // Returns true if function(input) returns true.
   // Returns false otherwise.
}
 

bool trickster(string input) {
string me = /* source code of trickster */;

  return !willAccept(me, input);
}

trickster willAccept

trickster(input) returns true
 

↔
 

willAccept(me, input) returns true
 

↔
 

trickster(input) does not return true

A decider for ATM has to have this behavior.

Because of how we wrote trickster.



  

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is a decider D for ATM.
We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then returns
true if function(w) returns true and returns false otherwise. Given this, consider 
this function trickster:
        bool trickster(string input) {
            string me = /* source code of trickster */;
            return !willAccept(me, input);
        } 

Since willAccept decides ATM and me holds the source of trickster, we know that
willAccept(me, input) returns true  if and only if  trickster(input) returns true.

Given how trickster is written, we see that
willAccept(me, input) returns true if and only if trickster(input) doesn’t return true.

This means that
trickster(input) returns true  if and only if  trickster(input) doesn’t return true.

This is impossible. We’ve reached a contradiction, so our assumption was wrong 
and ATM is undecidable. ■
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New Stuff!



  

More Impossibility Results



  

The Halting Problem
● The most famous undecidable problem is the halting 

problem, which asks:
Given a TM M and a string w,
will M halt when run on w? 

● As a formal language, this problem would be 
expressed as

HALT = { ⟨M, w⟩ | M is a TM that halts on w } 
● Theorem: HALT is recognizable, but undecidable.

● There’s a recognizer for HALT.
● There is no decider for HALT.



  

HALT ∈ RE
● Claim: HALT ∈ RE.
● Idea: If you were certain that a TM M halted on a 

string w, could you convince me of that?
● Yes – just run M on w and see what happens!

bool recognizeIfHalts(string TM, string w) {
   set up a simulation of M running on w;

while (true) {
if (M returned true) return true;
else if (M returned false) return true;
else simulate one more step of M running on w;

}
}



  

Theorem: The halting problem is 
undecidable.



  

A Decider for HALT
● Let’s suppose that, somehow, we managed to build a decider 

for HALT = { ⟨M, w⟩ | M is a TM that halts on w }. 
● Schematically, that decider would look like this:

  

● We could represent this decider in software as a method
bool willHalt(string function, string input);

that takes as input a function function and a string input, then
● returns true if function(input) returns anything (halts), and
● returns false if function(input) never returns anything (loops).

Decider
for HALT

M

w

Yes, M halts on w.

No, M loops on w.



  

bool willHalt(string function, string input) {
   // Returns true if function(input) halts.
   // Returns false otherwise.
}
 

bool trickster(string input) {
string me = /* source code of trickster */;

 

   if (willHalt(me, input)) {
       while (true) {
           // Do nothing
       }
   } else {
       return true;
   }
}

trickster willHalt

trickster(input) halts
 

↔
 

willHalt(me, input) returns true
 

↔
 

trickster(input) loops

A decider for HALT must do this.

We wrote trickster to have this behavior.



  

Theorem: HALT ∉ R.
Proof: By contradiction; assume that HALT ∈ R. Then there is a decider D for

HALT. We can represent D as a function
bool willHalt(string function, string w);

that takes in the source code of a function function and a string w, then returns
true if function(w) halts and returns false otherwise. Given this, consider this 
function trickster:
        bool trickster(string input) {
            string me = /* source code of trickster */;
            if (willHalt(me, input)) {
                while (true) { }
            } else {
                return true;
            }
        } 

Since willHalt decides HALT and me holds the source of trickster, we know that
willHalt(me, input) returns true    if and only if    trickster(input) halts.

Given how trickster is written, we see that
willHalt(me, input) returns true    if and only if    trickster(input) loops.

This means that
trickster(input) halts    if and only if    trickster(input) loops.

This is impossible. We’ve reached a contradiction, so our assumption was wrong 
and HALT is undecidable. ■
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So What?
● These problems might not seem all that 

exciting, so who cares if we can't solve 
them?

● Turns out, this same line of reasoning 
can be used to show that some very 
important problems are impossible to 
solve.



  

Analogy Time!



  

Engineering Problem: Design a diesel engine that
doesn’t emit lots of NOₓ pollutants.



  

Engineering Problem: Design a diesel engine that
doesn’t emit lots of NOₓ pollutants.

Engineering Prowess!



  

Engineering Problem: Design a diesel engine that
doesn’t emit lots of NOₓ pollutants.

Awesome Engine!Engineering Prowess!



  

Engineering Problem: Design a diesel engine that
doesn’t emit lots of NOₓ pollutants.

Regulatory Problem: Design a testing procedure that, given a 
diesel engine, determines whether it emits lots of NOₓ pollutants.

Awesome Engine!

Engine Testing
Regimen

Engineering Prowess!



  

Engineering Problem: Design a diesel engine that
doesn’t emit lots of NOₓ pollutants.

Regulatory Problem: Design a testing procedure that, given a 
diesel engine, determines whether it emits lots of NOₓ pollutants.

Awesome Engine!

Engine Testing
Regimen

Engineering Prowess!



  

Engineering Problem: Design a diesel engine that
doesn’t emit lots of NOₓ pollutants.

Regulatory Problem: Design a testing procedure that, given a 
diesel engine, determines whether it emits lots of NOₓ pollutants.

Awesome Engine!

Engine Testing
Regimen

Yep

Nah

Engineering Prowess!



  

Engineering Problem: Design a diesel engine that
doesn’t emit lots of NOₓ pollutants.

Regulatory Problem: Design a testing procedure that, given a 
diesel engine, determines whether it emits lots of NOₓ pollutants.

Awesome Engine!

Engine Testing
Regimen

Yep

Nah

Engineering Prowess!

Dieselgate: The auto makers
had their cars behave differently
based on whether or not they
were being tested. Yikes!

https://en.wikipedia.org/wiki/Diesel_emissions_scandal


  

Fact: Almost all “regulatory problems” 
about computer programs are undecidable. 

That is, almost all problems of the form 
“does program X have [behavior Y]” are 

undecidable.

This can be formalized through a result 
called Rice’s Theorem; take CS154 for 

details!



  

A (Topical) Example



  

Secure Voting
● Suppose that you want to make a voting machine for 

use in an election between two parties (the Zomp 
Party and the Puce Party).

● Let Σ = {z, p}. A string w ∈ Σ* corresponds to a series 
of votes for the candidates.

● Example: zzpppzp means “two people voted for z, then 
three people voted for p, then one more person voted 
for z, then one more person voted for p.”

● A secure voting machine is a TM that takes as input 
a string of z's and p's, then reports whether person z 
won the election.
● “Secure” in the sense of “actually checks the vote totals” as 

opposed to rigging the election, discounting votes, etc.



  

bool bee(string input) {
   int numZs = countZsIn(input);
   int numPs = countPsIn(input);

   return numZs > numPs;
}

bool topaz(string input) {
   return input != "" &&
          input[0] == 'z';
}

bool anna(string input) {
   int numZs = countZsIn(input);
   int numPs = countPsIn(input);

   if (numZs = numPs) {
       return false;
   } else if (numZs < numPs) {
       return false;
   } else {
       return true;
   }
}

bool green(string input) { 

   int n = input.length();
   while (n > 1) {
      if (n % 2 == 0) n /= 2;
      else n = 3*n + 1;
   }
 

   int numZs = countZsIn(input);
   int numPs = countPsIn(input);
 

   return numZs > numPs;
}

A secure voting machine is a TM M where
M accepts w ∈ {z, p}* if and only if w has more z’s than p’s.

Which of these are secure voting
machines? Answer at

https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev


  

bool bee(string input) {
   int numZs = countZsIn(input);
   int numPs = countPsIn(input);

   return numZs > numPs;
}

bool topaz(string input) {
   return input != "" &&
          input[0] == 'z';
}

bool anna(string input) {
   int numZs = countZsIn(input);
   int numPs = countPsIn(input);

   if (numZs = numPs) {
       return false;
   } else if (numZs < numPs) {
       return false;
   } else {
       return true;
   }
}

bool green(string input) { 

   int n = input.length();
   while (n > 1) {
      if (n % 2 == 0) n /= 2;
      else n = 3*n + 1;
   }
 

   int numZs = countZsIn(input);
   int numPs = countPsIn(input);
 

   return numZs > numPs;
}

A (simple) secure voting machine. A (simple) insecure voting machine.

An (evil) insecure voting machine. No one knows!

A secure voting machine is a TM M where
M accepts w ∈ {z, p}* if and only if w has more z’s than p’s.



  

Secure Voting
● As you can see, it can be hard to tell whether 

a candidate program is a secure voting 
machine.

● Could we automatically check if a voting 
machine is secure?

● Question: Given a TM that someone claims is 
a secure voting machine, could we 
automatically check whether it actually is a 
secure voting machine?
● This is a “regulatory” problem, not an 

“engineering” problem.



  

A Decider for Secure Voting
● Suppose that, somehow, we built a decider that can test if 

an arbitrary TM is a secure voting machine.
● Schematically, that decider would look like this:

  

● We could represent this decider in software as a method
bool isSecureVotingMachine(string function);

that takes as input a function, then returns whether that 
function is a secure voting machine.

Decider
for secure

voting
M

Yes, M is a secure voting
machine.

No, M is not a secure 
voting machine.



  

bool isSecureVotingMachine(string function) {
   // Returns whether function accepts only
   // strings with more z’s than p’s.
}
 

bool trickster(string input) {
string me = /* source code of trickster */;

 

   if (isSecureVotingMachine(me)) {
       return countZsIn(input) <= countPsIn(input);
   } else {
       return countZsIn(input) > countPsIn(input);
   }
}

trickster isSecureVotingMachine

trickster is a secure voting machine
 

↔
 

isSecureVotingMachine(me) returns true
 

↔
 

trickster isn’t a secure voting machine.



  

Theorem: The secure voting problem is undecidable.

Proof: By contradiction; there is a decider D for the secure voting problem. We can
represent D as a function

bool isSecureVotingMachine(string function);

that takes in the source code of a function function, then returns whether function is a 
secure voting machine (that is, whether it accepts precisely the strings with more z’s than 
p’s). Given this, consider this function trickster:
        bool trickster(string input) {
            string me = /* source code of trickster */;
            if (isSecureVotingMachine(me)) {
                return /* if input has at most as many z’s as p’s */;
            } else {
                return /* if input has more z’s than p’s */;
            }
        } 

Since isSecureVotingMachine decides the secure voting problem and me holds the source of 
trickster, we know that

isSecureVotingMachine(me) returns true  if and only if  trickster is a secure voting machine.

Given how trickster is written, we see that

isSecureVotingMachine(me) returns true  if and only if  trickster isn’t a secure voting machine

This means that

trickster is a secure voting machine if and only if trickster isn’t a secure voting machine.

This is impossible. We’ve reached a contradiction, so our assumption was and the secure 
voting problem is undecidable. ■



  

Interpreting this Result
● The previous argument tells us that there is no general 

algorithm that we can follow to determine whether a 
program is a secure voting machine. In other words, any 
general algorithm to check voting machines will always be 
wrong on at least one input.

● So what can we do?
● Design algorithms that work in some, but not all cases. (This is 

often done in practice.)
● Fall back on human verification of voting machines. (We do that 

too.)
● Carry a healthy degree of skepticism about electronic voting 

machines. (Then again, did we even need the theoretical result 
for this?)

● Worth a read: https://xkcd.com/2030/

https://xkcd.com/2030/


  

Beyond R and RE



  

What exactly is the class RE?



  

RE, Formally
● Recall that the class RE is the class of all 

recognizable languages:
RE = { L | there is a TM M that recognizes L }

● Since R ≠ RE, there is no general way to 
“solve” problems in the class RE, if by “solve” 
you mean “make a computer program that can 
always tell you the correct answer.”

● So what exactly are the sorts of languages in 
RE?



  

Key Intuition:

A language L is in RE if, for any string w, if 
you are convinced that w ∈ L, there is some 
way you could prove that to someone else.



  

Example: Where’s Waldo?



  



  



  



  



  

Verification
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Verification
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Verification
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Verification
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Verification

Does the hailstone sequence 
terminate for this number?

11



  

Verification

Does the hailstone sequence 
terminate for this number?

11
Try running five steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

34
Try running five steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

17
Try running five steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

52
Try running five steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

26
Try running five steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

13
Try running five steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

11



  

Verification

Does the hailstone sequence 
terminate for this number?

11
Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

34
Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

17
Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

52
Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

26
Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

13
Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

40
Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

20
Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

10
Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

5
Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

16
Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

8
Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

4
Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

2
Try running fourteen steps of the Hailstone sequence.



  

Verification

Does the hailstone sequence 
terminate for this number?

1
Try running fourteen steps of the Hailstone sequence.



  

Verification

x3 + y3 + z3 = 137

Are there integers x, y, and z where 
the above statement is true?

Pick the following:

x = 3    y = -5    z = 6



  

Verification

x3 + y3 + z3 = 137

Are there integers x, y, and z where 
the above statement is true?

Pick the following:

x = -9    y = -11    z = 13



  

Verification
● Here’s code for simulating the hailstone sequence. No one knows 

whether it always terminates.
bool hailstone(int n) {
    if (n <= 0) return false;
    while (n != 1) {
        if (n % 2 == 0) n /= 2;
        else n = 3*n + 1;
    }
    return true;
}

● The following doesn’t solve hailstone, but instead checks 
whether a given number of steps is correct. It always terminates.

bool checkHailstone(int n, int numSteps) {
    if (n <= 0) return false;
    for (int i = 0; i < numSteps; i++) {
        if (n % 2 == 0) n /= 2;
        else n = 3*n + 1;
    }
    return n == 1;
}

Note the extra
parameter.



  

Verification
● Here’s code that searches for three cubes that sum to a 

target. It loops if the n isn’t the sum of three cubes.
bool isCubeSum(int n) {
    for (int max = 0; ; max++)
        for (int x = -max; x <= max; x++)
            for (int y = -max; y <= max; y++)
                for (int z = -max; z <= max; z++)
                    if (x*x*x + y*y*y + z*z*z == n) return true;
}

● The following doesn’t solve the sum of cubes problems, 
but instead checks whether three numbers sum to the 
target. It always terminates.

bool checkCubeSum(int n, int x, int y, int z) {
    return x*x*x + y*y*y + z*z*z == n;
} Note the extra

parameters.



  

Verifiers
● A verifier for a language L is a TM V 

with the following two properties:
V halts on all inputs.

∀w ∈ Σ*. (w ∈ L   ↔   ∃c ∈ Σ*. V accepts ⟨w, c⟩)
● Intuitively, what does this mean?



  

Deciders and Verifiers

Decider M
for L

Verifier V
for L

yes!

no!

yes!

not
sure

input string (w)

certificate (c)

input string (w)

“Solve the problem”

“Check an answer”

V halts on all inputs.
w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩ 

M halts on all inputs.
w ∈ L ↔ M accepts w 

If M accepts, then 
w ∈ L.

If M rejects, then 
w ∉ L.

If V accepts ⟨w, c⟩, 
then w ∈ L.

If V rejects ⟨w, c⟩, 
we don't know 
whether w ∈ L.



  

bool checkHailstone(int n, int numSteps) {
    if (n <= 0) return false;
    for (int i = 0; i < numSteps; i++) {
        if (n % 2 == 0) n /= 2;
        else n = 3*n + 1;
    }
    return n == 1;
}

bool checkCubeSum(int n, int x, int y, int z) {
    return x*x*x + y*y*y + z*z*z == n;
}



  

Verifiers
● A verifier for a language L is a TM V with the 

following properties:
V halts on all inputs.

∀w ∈ Σ*. (w ∈ L   ↔   ∃c ∈ Σ*. V accepts ⟨w, c⟩)
● Some notes about V:

● If V accepts ⟨w, c⟩, we're guaranteed w ∈ L.
● If V rejects ⟨w, c⟩, then either

– w ∈ L, but you gave the wrong c, or
– w ∉ L, so no possible c will work.



  

Verifiers
● A verifier for a language L is a TM V with the 

following properties:
V halts on all inputs.

∀w ∈ Σ*. (w ∈ L   ↔   ∃c ∈ Σ*. V accepts ⟨w, c⟩)
● Some notes about V:

● Notice that the certificate c is existentially 
quantified. Any string w ∈ L must have at least 
one c that causes V to accept, and possibly 
more.

● V is required to halt, so given any potential 
certificate c for w, you can check whether the 
certificate is correct.



  

Verifiers
● A verifier for a language L is a TM V with the 

following properties:
V halts on all inputs.

∀w ∈ Σ*. (w ∈ L   ↔   ∃c ∈ Σ*. V accepts ⟨w, c⟩)
● Some notes about V:

● Notice that V isn’t a decider for L and isn’t a 
recognizer for L.

● The job of V is just to check certificates, not to 
decide membership in L.



  

Verifiers
● A verifier for a language L is a TM V with the 

following properties:
V halts on all inputs.

∀w ∈ Σ*. (w ∈ L   ↔   ∃c ∈ Σ*. V accepts ⟨w, c⟩)
● Some notes about V:

● Although this formal definition works with a 
string c, remember that c can be an encoding of 
some other object.

● In practice, c will likely just be “some other 
auxiliary data that helps you out.”



  

What languages are verifiable?



  

Theorem: If L is a language, then there is 
a verifier for L if and only if L ∈ RE.

Proof: Appendix!



  

RE and Proofs
● Verifiers and recognizers give two different 

perspectives on the “proof” intuition for RE.
● Verifiers are explicitly built to check proofs that 

strings are in the language.
● If you know that some string w belongs to the 

language and you have the proof of it, you can 
convince someone else that w ∈ L.

● Recognizers can be thought of as devices that 
“search” for a proof that w ∈ L.
● If it finds it, great!
● If not, it might loop forever.



  

RE and Proofs
● If the RE languages represent languages where 

membership can be proven, what does a non-RE 
language look like?

● Intuitively, a language is not in RE if there is no 
general way to prove that a given string w ∈ L 
actually belongs to L.

● In other words, even if you knew that a string was 
in the language, you may never be able to 
convince anyone of it!



  

Finding Non-RE Languages



  

Recognizers and Recognizability
● Recall: We say that M is a recognizer for L if 

the following is true:
∀w ∈ Σ*. (w ∈ L    ↔    M accepts w).

● Some of these strings w, by pure coincidence, 
will be encodings of Turing machines.

● What happens if we list off all Turing 
machines, looking at how those TMs behave 
given other TMs as input?



  

M₁

M₂

M₀

M₃

M₄

M₅

…



  

All Turing machines, 
listed in some order.

M₁

M₂

M₀

M₃

M₄

M₅

…



  

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…



  

All TM source 
code, listed in 
the same order.
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What are we going to
do next?

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev
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…
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No TM has 
this behavior!
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…
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… … … … … …
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“The language of all
TMs that do not accept

their source code.”
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…
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… … … … … …
No No No Acc

{ ⟨M⟩ | M is a TM that 
does not accept ⟨M⟩ }
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M₁
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M₃

M₄
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Diagonalization Revisited
● The diagonalization language, which we 

denote LD, is defined as
LD = { ⟨M⟩ | M is a TM and M does not accept ⟨M⟩ }

● We constructed this language to be 
different from the language of every TM.

● Therefore, LD ∉ RE! Let’s go prove this.



  

LD = { ⟨M⟩ | M is a TM and M does not accept ⟨M⟩ }

Theorem: LD ∉ RE.

Proof: Assume for the sake of contradiction that LD ∈ RE. This 
means that there is a recognizer R for LD.

Now, focus on what happens if we run recognizer R on its own 
encoding (that is, running R on ⟨R⟩). Since R is a recognizer for LD, 
we see that

R accepts ⟨R⟩        if and only if        ⟨R⟩ ∈ LD.

By definition of LD, we know that

⟨R⟩ ∈ LD        if and only if        R does not accept ⟨R⟩.

Combining the two above statements tells us that
    R accepts ⟨R⟩   if and only if    R does not accept ⟨R⟩.

This is impossible. We’ve reached a contradiction, so our 
assumption was wrong, and so LD ∉ RE. ■



  

Regular
Languages CFLs

All Languages

R RE

LD

ATM

HALT



  

What This Means
● On a deeper philosophical level, the fact that non-

RE languages exist supports the following claim:
There are statements that
are true but not provable.

● Intuitively, given any non-RE language, there will 
be some string in the language that cannot be 
proven to be in the language.

● This result can be formalized as a result called 
Gödel's incompleteness theorem, one of the 
most important mathematical results of all time.

● Want to learn more? Take Phil 152 or CS154!



  

What This Means
● On a more philosophical note, you could interpret 

the previous result in the following way:
There are inherent limits about what 

mathematics can teach us.
● There's no automatic way to do math. There are 

true statements that we can't prove.
● That doesn't mean that mathematics is worthless. 

It just means that we need to temper our 
expectations about it.



  

Where We Stand
● We've just done a crazy, whirlwind tour of computability 

theory:
● The Church-Turing thesis tells us that TMs give us a 

mechanism for studying computation in the abstract.
● Universal computers – computers as we know them – are not 

just a stroke of luck. The existence of the universal TM ensures 
that such computers must exist.

● Self-reference is an inherent consequence of computational 
power.

● Undecidable problems exist partially as a consequence of the 
above and indicate that there are statements whose truth can't 
be determined by computational processes.

● Unrecognizable problems are out there and can be discovered 
via diagonalization. They imply there are limits to mathematical 
proof.



  

The Big Picture

DFA

NFA

Regex

CFG Decider

Recog-
nizer

Verifier

REG
CFL

R
RE



  

Where We've Been
● The class R represents problems that can be 

solved by a computer.
● The class RE represents problems where “yes” 

answers can be verified by a computer. 
The mapping reduction can be used to find 
connections between problems.



  

Where We're Going
● The class P represents problems that can be 

solved efficiently by a computer.
● The class NP represents problems where “yes” 

answers can be verified efficiently by a 
computer.



  

Next Time
● Introduction to Complexity Theory

● Not all decidable problems are created 
equal!

● The Classes P and NP
● Two fundamental and important complexity 

classes.
● The P  NP Question≟

● A literal million-dollar question!



  

Appendix: Verifiers and RE Languages



  

Theorem: Let L be a language. Then 
L ∈ RE if and only if there is a

verifier V for L.



  

Where We’ve Been

NFA Regex

State Elimination

Thompson’s Algorithm



  

Where We’re Going

Verifier Recognizer

Try all certificates

Enforce a step count



  

● Theorem: If there is a verifier V for a language 
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L, 
find a way to construct a recognizer M for L.

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check an answer”

Verifiers and RE
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Verifiers and RE
● Theorem: If there is a verifier V for a language 

L, then L ∈ RE.
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Verifiers and RE
● Theorem: If V is a verifier for L, then L ∈ RE.
● Proof sketch: Consider the following program:

  

 
 
If w ∈ L, there is some c ∈ Σ* where V accepts ⟨w, c⟩. 
The function isInL tries all possible strings as 
certificates, so it will eventually find c (or some other 
working certificate), see V accept ⟨w, c⟩, then return 
true. Conversely, if isInL(w) returns true, then there 
was some string c such that V accepted ⟨w, c⟩, so we 
see that w ∈ L. ■

bool isInL(string w) {
   for (each string c) {
      if (V accepts w, c ) ⟨ ⟩ return true;
   }
}



  

Verifiers and RE
● Theorem: If L ∈ RE, then there is a 

verifier for L.
● Proof Goal: Beginning with a recognizer 

M for the language L, show how to 
construct a verifier V for L.



  

Verifiers and RE
● Theorem: If L ∈ RE, then there is a verifier for L.
● Proof sketch: Let L be a RE language and let M be a recognizer 

for it. Consider this function:
  
 

 
 

Note that checkIsInL always halts, since each step takes only finite 
time to complete. Next, notice that if there is a c where 
checkIsInL(w, c) returns true, then M accepted w after running for 
c steps, so w ∈ L. Conversely, if w ∈ L, then M accepts w after 
some number of steps (call that number c). Then checkIsInL(w, c) 
will run M on w for c steps, watch M accept w, then return true. ■

 bool checkIsInL(string w, int c) {
    TM M = /* hardcoded version of a recognizer for L */;
    set up a simulation of M running on w;
    for (int i = 0; i < c; i++) {
       simulate the next step of M running on W;
    }
    return whether M is in an accepting state;
 }
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