

Lecture 24:
Unsolvable Problems

CS103CS103

Winter 2025Winter 2025

Part 2 of 2

Outline for Today
● More on Undecidability

● Even more problems we can’t solve.
● A Different Perspective on RE

● What exactly does “recognizability” mean?
● Verifiers

● A new approach to problem-solving.
● Beyond RE

● A beautiful example of an impossible problem.

Recap from Last Time

bool willAccept(string function, string input) {
 // Returns true if function(input) returns true.
 // Returns false otherwise.
}

bool trickster(string input) {
string me = /* source code of trickster */;

 return !willAccept(me, input);
}

trickster willAccept

Which of the following must be true?

(1) trickster is a decider for ATM.

 (2) willAccept is a decider for ATM.

(3) willAccept(me, input) simulates
 trickster on input and does

whatever trickster does to input.

(4) trickster loops on at least one
input.

Answer at https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

bool willAccept(string function, string input) {
 // Returns true if function(input) returns true.
 // Returns false otherwise.
}

bool trickster(string input) {
string me = /* source code of trickster */;

 return !willAccept(me, input);
}

trickster willAccept

trickster(input) returns true

↔

willAccept(me, input) returns true

↔

trickster(input) does not return true

A decider for ATM has to have this behavior.

Because of how we wrote trickster.

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is a decider D for ATM.
We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then returns
true if function(w) returns true and returns false otherwise. Given this, consider
this function trickster:
 bool trickster(string input) {
 string me = /* source code of trickster */;
 return !willAccept(me, input);
 }

Since willAccept decides ATM and me holds the source of trickster, we know that
willAccept(me, input) returns true if and only if trickster(input) returns true.

Given how trickster is written, we see that
willAccept(me, input) returns true if and only if trickster(input) doesn’t return true.

This means that
trickster(input) returns true if and only if trickster(input) doesn’t return true.

This is impossible. We’ve reached a contradiction, so our assumption was wrong
and ATM is undecidable. ■

Regular
Languages CFLs

All Languages

R RE
ATM

New Stuff!

More Impossibility Results

The Halting Problem
● The most famous undecidable problem is the halting

problem, which asks:
Given a TM M and a string w,
will M halt when run on w?

● As a formal language, this problem would be
expressed as

HALT = { ⟨M, w⟩ | M is a TM that halts on w }
● Theorem: HALT is recognizable, but undecidable.

● There’s a recognizer for HALT.
● There is no decider for HALT.

HALT ∈ RE
● Claim: HALT ∈ RE.
● Idea: If you were certain that a TM M halted on a

string w, could you convince me of that?
● Yes – just run M on w and see what happens!

bool recognizeIfHalts(string TM, string w) {
 set up a simulation of M running on w;

while (true) {
if (M returned true) return true;
else if (M returned false) return true;
else simulate one more step of M running on w;

}
}

Theorem: The halting problem is
undecidable.

A Decider for HALT
● Let’s suppose that, somehow, we managed to build a decider

for HALT = { ⟨M, w⟩ | M is a TM that halts on w }.
● Schematically, that decider would look like this:

● We could represent this decider in software as a method
bool willHalt(string function, string input);

that takes as input a function function and a string input, then
● returns true if function(input) returns anything (halts), and
● returns false if function(input) never returns anything (loops).

Decider
for HALT

M

w

Yes, M halts on w.

No, M loops on w.

bool willHalt(string function, string input) {
 // Returns true if function(input) halts.
 // Returns false otherwise.
}

bool trickster(string input) {
string me = /* source code of trickster */;

 if (willHalt(me, input)) {
 while (true) {
 // Do nothing
 }
 } else {
 return true;
 }
}

trickster willHalt

trickster(input) halts

↔

willHalt(me, input) returns true

↔

trickster(input) loops

A decider for HALT must do this.

We wrote trickster to have this behavior.

Theorem: HALT ∉ R.
Proof: By contradiction; assume that HALT ∈ R. Then there is a decider D for

HALT. We can represent D as a function
bool willHalt(string function, string w);

that takes in the source code of a function function and a string w, then returns
true if function(w) halts and returns false otherwise. Given this, consider this
function trickster:
 bool trickster(string input) {
 string me = /* source code of trickster */;
 if (willHalt(me, input)) {
 while (true) { }
 } else {
 return true;
 }
 }

Since willHalt decides HALT and me holds the source of trickster, we know that
willHalt(me, input) returns true if and only if trickster(input) halts.

Given how trickster is written, we see that
willHalt(me, input) returns true if and only if trickster(input) loops.

This means that
trickster(input) halts if and only if trickster(input) loops.

This is impossible. We’ve reached a contradiction, so our assumption was wrong
and HALT is undecidable. ■

Regular
Languages CFLs

All Languages

R RE
ATM

HALT

So What?
● These problems might not seem all that

exciting, so who cares if we can't solve
them?

● Turns out, this same line of reasoning
can be used to show that some very
important problems are impossible to
solve.

Analogy Time!

Engineering Problem: Design a diesel engine that
doesn’t emit lots of NOₓ pollutants.

Engineering Problem: Design a diesel engine that
doesn’t emit lots of NOₓ pollutants.

Engineering Prowess!

Engineering Problem: Design a diesel engine that
doesn’t emit lots of NOₓ pollutants.

Awesome Engine!Engineering Prowess!

Engineering Problem: Design a diesel engine that
doesn’t emit lots of NOₓ pollutants.

Regulatory Problem: Design a testing procedure that, given a
diesel engine, determines whether it emits lots of NOₓ pollutants.

Awesome Engine!

Engine Testing
Regimen

Engineering Prowess!

Engineering Problem: Design a diesel engine that
doesn’t emit lots of NOₓ pollutants.

Regulatory Problem: Design a testing procedure that, given a
diesel engine, determines whether it emits lots of NOₓ pollutants.

Awesome Engine!

Engine Testing
Regimen

Engineering Prowess!

Engineering Problem: Design a diesel engine that
doesn’t emit lots of NOₓ pollutants.

Regulatory Problem: Design a testing procedure that, given a
diesel engine, determines whether it emits lots of NOₓ pollutants.

Awesome Engine!

Engine Testing
Regimen

Yep

Nah

Engineering Prowess!

Engineering Problem: Design a diesel engine that
doesn’t emit lots of NOₓ pollutants.

Regulatory Problem: Design a testing procedure that, given a
diesel engine, determines whether it emits lots of NOₓ pollutants.

Awesome Engine!

Engine Testing
Regimen

Yep

Nah

Engineering Prowess!

Dieselgate: The auto makers
had their cars behave differently
based on whether or not they
were being tested. Yikes!

https://en.wikipedia.org/wiki/Diesel_emissions_scandal

Fact: Almost all “regulatory problems”
about computer programs are undecidable.

That is, almost all problems of the form
“does program X have [behavior Y]” are

undecidable.

This can be formalized through a result
called Rice’s Theorem; take CS154 for

details!

A (Topical) Example

Secure Voting
● Suppose that you want to make a voting machine for

use in an election between two parties (the Zomp
Party and the Puce Party).

● Let Σ = {z, p}. A string w ∈ Σ* corresponds to a series
of votes for the candidates.

● Example: zzpppzp means “two people voted for z, then
three people voted for p, then one more person voted
for z, then one more person voted for p.”

● A secure voting machine is a TM that takes as input
a string of z's and p's, then reports whether person z
won the election.
● “Secure” in the sense of “actually checks the vote totals” as

opposed to rigging the election, discounting votes, etc.

bool bee(string input) {
 int numZs = countZsIn(input);
 int numPs = countPsIn(input);

 return numZs > numPs;
}

bool topaz(string input) {
 return input != "" &&
 input[0] == 'z';
}

bool anna(string input) {
 int numZs = countZsIn(input);
 int numPs = countPsIn(input);

 if (numZs = numPs) {
 return false;
 } else if (numZs < numPs) {
 return false;
 } else {
 return true;
 }
}

bool green(string input) {

 int n = input.length();
 while (n > 1) {
 if (n % 2 == 0) n /= 2;
 else n = 3*n + 1;
 }

 int numZs = countZsIn(input);
 int numPs = countPsIn(input);

 return numZs > numPs;
}

A secure voting machine is a TM M where
M accepts w ∈ {z, p}* if and only if w has more z’s than p’s.

Which of these are secure voting
machines? Answer at

https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

bool bee(string input) {
 int numZs = countZsIn(input);
 int numPs = countPsIn(input);

 return numZs > numPs;
}

bool topaz(string input) {
 return input != "" &&
 input[0] == 'z';
}

bool anna(string input) {
 int numZs = countZsIn(input);
 int numPs = countPsIn(input);

 if (numZs = numPs) {
 return false;
 } else if (numZs < numPs) {
 return false;
 } else {
 return true;
 }
}

bool green(string input) {

 int n = input.length();
 while (n > 1) {
 if (n % 2 == 0) n /= 2;
 else n = 3*n + 1;
 }

 int numZs = countZsIn(input);
 int numPs = countPsIn(input);

 return numZs > numPs;
}

A (simple) secure voting machine. A (simple) insecure voting machine.

An (evil) insecure voting machine. No one knows!

A secure voting machine is a TM M where
M accepts w ∈ {z, p}* if and only if w has more z’s than p’s.

Secure Voting
● As you can see, it can be hard to tell whether

a candidate program is a secure voting
machine.

● Could we automatically check if a voting
machine is secure?

● Question: Given a TM that someone claims is
a secure voting machine, could we
automatically check whether it actually is a
secure voting machine?
● This is a “regulatory” problem, not an

“engineering” problem.

A Decider for Secure Voting
● Suppose that, somehow, we built a decider that can test if

an arbitrary TM is a secure voting machine.
● Schematically, that decider would look like this:

● We could represent this decider in software as a method
bool isSecureVotingMachine(string function);

that takes as input a function, then returns whether that
function is a secure voting machine.

Decider
for secure

voting
M

Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

bool isSecureVotingMachine(string function) {
 // Returns whether function accepts only
 // strings with more z’s than p’s.
}

bool trickster(string input) {
string me = /* source code of trickster */;

 if (isSecureVotingMachine(me)) {
 return countZsIn(input) <= countPsIn(input);
 } else {
 return countZsIn(input) > countPsIn(input);
 }
}

trickster isSecureVotingMachine

trickster is a secure voting machine

↔

isSecureVotingMachine(me) returns true

↔

trickster isn’t a secure voting machine.

Theorem: The secure voting problem is undecidable.

Proof: By contradiction; there is a decider D for the secure voting problem. We can
represent D as a function

bool isSecureVotingMachine(string function);

that takes in the source code of a function function, then returns whether function is a
secure voting machine (that is, whether it accepts precisely the strings with more z’s than
p’s). Given this, consider this function trickster:
 bool trickster(string input) {
 string me = /* source code of trickster */;
 if (isSecureVotingMachine(me)) {
 return /* if input has at most as many z’s as p’s */;
 } else {
 return /* if input has more z’s than p’s */;
 }
 }

Since isSecureVotingMachine decides the secure voting problem and me holds the source of
trickster, we know that

isSecureVotingMachine(me) returns true if and only if trickster is a secure voting machine.

Given how trickster is written, we see that

isSecureVotingMachine(me) returns true if and only if trickster isn’t a secure voting machine

This means that

trickster is a secure voting machine if and only if trickster isn’t a secure voting machine.

This is impossible. We’ve reached a contradiction, so our assumption was and the secure
voting problem is undecidable. ■

Interpreting this Result
● The previous argument tells us that there is no general

algorithm that we can follow to determine whether a
program is a secure voting machine. In other words, any
general algorithm to check voting machines will always be
wrong on at least one input.

● So what can we do?
● Design algorithms that work in some, but not all cases. (This is

often done in practice.)
● Fall back on human verification of voting machines. (We do that

too.)
● Carry a healthy degree of skepticism about electronic voting

machines. (Then again, did we even need the theoretical result
for this?)

● Worth a read: https://xkcd.com/2030/

https://xkcd.com/2030/

Beyond R and RE

What exactly is the class RE?

RE, Formally
● Recall that the class RE is the class of all

recognizable languages:
RE = { L | there is a TM M that recognizes L }

● Since R ≠ RE, there is no general way to
“solve” problems in the class RE, if by “solve”
you mean “make a computer program that can
always tell you the correct answer.”

● So what exactly are the sorts of languages in
RE?

Key Intuition:

A language L is in RE if, for any string w, if
you are convinced that w ∈ L, there is some
way you could prove that to someone else.

Example: Where’s Waldo?

Verification

3

6

8

1

5

1

7

7

5

2

3

4

1

2

4

6

3

1

8

3

5

7

1

9

8

5

7

5

2

2

7

9

4

8

Does this Sudoku puzzle
have a solution?

Verification
1
1
3

6

1
8

1

5

1

1
1
1
1
1

1
1
7

1

7

1
1
5

1
2

3

1
4

1
1
1

1
1
1
2

4

1

6

1
1
3

1
1

1
1
8

1
3

5

1
1
1
7

1
1

1

1
9

8

1
5

1
1
7

1
5

1
1
2

1
1
1
1

1
2

7

9

1
4

8

1
1

Does this Sudoku puzzle
have a solution?

Verification

3

6

8

1

5

1

7

7

5

2

3

4

1

2

4

6

3

1

8

3

5

7

1

9

8

5

7

5

2

2

7

9

4

8

Does this Sudoku puzzle
have a solution?

Verification
2
4
3

6

7
8

1

5

9

5
9
8
4
1

3
6
7

2

7

1
6
5

9
2

3

8
4

9
8
1

7
5
6
2

4

3

6

7
2
3

4
1

5
9
8

4
3

5

2
8
9
7

6
1

1

6
9

8

3
5

4
2
7

8
5

4
1
2

7
9
3
6

3
2

7

9

6
4

8

1
5

Does this Sudoku puzzle
have a solution?

Verification

Does the hailstone sequence
terminate for this number?

11

Verification

Does the hailstone sequence
terminate for this number?

11
Try running five steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

34
Try running five steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

17
Try running five steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

52
Try running five steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

26
Try running five steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

13
Try running five steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

11

Verification

Does the hailstone sequence
terminate for this number?

11
Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

34
Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

17
Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

52
Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

26
Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

13
Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

40
Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

20
Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

10
Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

5
Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

16
Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

8
Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

4
Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

2
Try running fourteen steps of the Hailstone sequence.

Verification

Does the hailstone sequence
terminate for this number?

1
Try running fourteen steps of the Hailstone sequence.

Verification

x3 + y3 + z3 = 137

Are there integers x, y, and z where
the above statement is true?

Pick the following:

x = 3 y = -5 z = 6

Verification

x3 + y3 + z3 = 137

Are there integers x, y, and z where
the above statement is true?

Pick the following:

x = -9 y = -11 z = 13

Verification
● Here’s code for simulating the hailstone sequence. No one knows

whether it always terminates.
bool hailstone(int n) {
 if (n <= 0) return false;
 while (n != 1) {
 if (n % 2 == 0) n /= 2;
 else n = 3*n + 1;
 }
 return true;
}

● The following doesn’t solve hailstone, but instead checks
whether a given number of steps is correct. It always terminates.

bool checkHailstone(int n, int numSteps) {
 if (n <= 0) return false;
 for (int i = 0; i < numSteps; i++) {
 if (n % 2 == 0) n /= 2;
 else n = 3*n + 1;
 }
 return n == 1;
}

Note the extra
parameter.

Verification
● Here’s code that searches for three cubes that sum to a

target. It loops if the n isn’t the sum of three cubes.
bool isCubeSum(int n) {
 for (int max = 0; ; max++)
 for (int x = -max; x <= max; x++)
 for (int y = -max; y <= max; y++)
 for (int z = -max; z <= max; z++)
 if (x*x*x + y*y*y + z*z*z == n) return true;
}

● The following doesn’t solve the sum of cubes problems,
but instead checks whether three numbers sum to the
target. It always terminates.

bool checkCubeSum(int n, int x, int y, int z) {
 return x*x*x + y*y*y + z*z*z == n;
} Note the extra

parameters.

Verifiers
● A verifier for a language L is a TM V

with the following two properties:
V halts on all inputs.

∀w ∈ Σ*. (w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩)
● Intuitively, what does this mean?

Deciders and Verifiers

Decider M
for L

Verifier V
for L

yes!

no!

yes!

not
sure

input string (w)

certificate (c)

input string (w)

“Solve the problem”

“Check an answer”

V halts on all inputs.
w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩

M halts on all inputs.
w ∈ L ↔ M accepts w

If M accepts, then
w ∈ L.

If M rejects, then
w ∉ L.

If V accepts ⟨w, c⟩,
then w ∈ L.

If V rejects ⟨w, c⟩,
we don't know
whether w ∈ L.

bool checkHailstone(int n, int numSteps) {
 if (n <= 0) return false;
 for (int i = 0; i < numSteps; i++) {
 if (n % 2 == 0) n /= 2;
 else n = 3*n + 1;
 }
 return n == 1;
}

bool checkCubeSum(int n, int x, int y, int z) {
 return x*x*x + y*y*y + z*z*z == n;
}

Verifiers
● A verifier for a language L is a TM V with the

following properties:
V halts on all inputs.

∀w ∈ Σ*. (w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩)
● Some notes about V:

● If V accepts ⟨w, c⟩, we're guaranteed w ∈ L.
● If V rejects ⟨w, c⟩, then either

– w ∈ L, but you gave the wrong c, or
– w ∉ L, so no possible c will work.

Verifiers
● A verifier for a language L is a TM V with the

following properties:
V halts on all inputs.

∀w ∈ Σ*. (w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩)
● Some notes about V:

● Notice that the certificate c is existentially
quantified. Any string w ∈ L must have at least
one c that causes V to accept, and possibly
more.

● V is required to halt, so given any potential
certificate c for w, you can check whether the
certificate is correct.

Verifiers
● A verifier for a language L is a TM V with the

following properties:
V halts on all inputs.

∀w ∈ Σ*. (w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩)
● Some notes about V:

● Notice that V isn’t a decider for L and isn’t a
recognizer for L.

● The job of V is just to check certificates, not to
decide membership in L.

Verifiers
● A verifier for a language L is a TM V with the

following properties:
V halts on all inputs.

∀w ∈ Σ*. (w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩)
● Some notes about V:

● Although this formal definition works with a
string c, remember that c can be an encoding of
some other object.

● In practice, c will likely just be “some other
auxiliary data that helps you out.”

What languages are verifiable?

Theorem: If L is a language, then there is
a verifier for L if and only if L ∈ RE.

Proof: Appendix!

RE and Proofs
● Verifiers and recognizers give two different

perspectives on the “proof” intuition for RE.
● Verifiers are explicitly built to check proofs that

strings are in the language.
● If you know that some string w belongs to the

language and you have the proof of it, you can
convince someone else that w ∈ L.

● Recognizers can be thought of as devices that
“search” for a proof that w ∈ L.
● If it finds it, great!
● If not, it might loop forever.

RE and Proofs
● If the RE languages represent languages where

membership can be proven, what does a non-RE
language look like?

● Intuitively, a language is not in RE if there is no
general way to prove that a given string w ∈ L
actually belongs to L.

● In other words, even if you knew that a string was
in the language, you may never be able to
convince anyone of it!

Finding Non-RE Languages

Recognizers and Recognizability
● Recall: We say that M is a recognizer for L if

the following is true:
∀w ∈ Σ*. (w ∈ L ↔ M accepts w).

● Some of these strings w, by pure coincidence,
will be encodings of Turing machines.

● What happens if we list off all Turing
machines, looking at how those TMs behave
given other TMs as input?

M₁

M₂

M₀

M₃

M₄

M₅

…

All Turing machines,
listed in some order.

M₁

M₂

M₀

M₃

M₄

M₅

…

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

All TM source
code, listed in
the same order.

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …
⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …
Acc Acc Acc Acc Acc Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …
Acc Acc Acc Acc Acc Acc …
Acc Acc Acc Acc Acc Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …
Acc Acc Acc Acc Acc Acc …
Acc Acc Acc Acc Acc Acc …
No Acc Acc No Acc Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …
Acc Acc Acc Acc Acc Acc …
Acc Acc Acc Acc Acc Acc …
No Acc Acc No Acc Acc …
Acc No Acc No Acc No …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …
Acc Acc Acc Acc Acc Acc …
Acc Acc Acc Acc Acc Acc …
No Acc Acc No Acc Acc …
Acc No Acc No Acc No …
No No Acc Acc No No …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …
Acc Acc Acc Acc Acc Acc …
Acc Acc Acc Acc Acc Acc …
No Acc Acc No Acc Acc …
Acc No Acc No Acc No …
No No Acc Acc No No …
… … … … … … …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …
Acc Acc Acc Acc Acc Acc …
Acc Acc Acc Acc Acc Acc …
No Acc Acc No Acc Acc …
Acc No Acc No Acc No …
No No Acc Acc No No …
… … … … … … …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …
Acc Acc Acc Acc Acc Acc …
Acc Acc Acc Acc Acc Acc …
No Acc Acc No Acc Acc …
Acc No Acc No Acc No …
No No Acc Acc No No …
… … … … … … …
Acc Acc Acc No Acc No …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …
Acc Acc Acc Acc Acc Acc …
Acc Acc Acc Acc Acc Acc …
No Acc Acc No Acc Acc …
Acc No Acc No Acc No …
No No Acc Acc No No …
… … … … … … …
Acc Acc Acc No Acc No …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

What are we going to
do next?

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Acc No No Acc Acc No …
Acc Acc Acc Acc Acc Acc …
Acc Acc Acc Acc Acc Acc …
No Acc Acc No Acc Acc …
Acc No Acc No Acc No …
No No Acc Acc No No …
… … … … … … …
Acc Acc Acc No Acc No …

Flip all “accept”
to “no” and
vice-versa

No No No Acc No Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …
Acc Acc Acc Acc Acc Acc …
Acc Acc Acc Acc Acc Acc …
No Acc Acc No Acc Acc …
Acc No Acc No Acc No …
No No Acc Acc No No …
… … … … … … …
No No No Acc No Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …
Acc Acc Acc Acc Acc Acc …
Acc Acc Acc Acc Acc Acc …
No Acc Acc No Acc Acc …
Acc No Acc No Acc No …
No No Acc Acc No No …
… … … … … … …
No No No Acc No Acc …

What TM has
this behavior?

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …
Acc Acc Acc Acc Acc Acc …
Acc Acc Acc Acc Acc Acc …
No Acc Acc No Acc Acc …
Acc No Acc No Acc No …
No No Acc Acc No No …
… … … … … … …
No No No Acc No Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …
Acc Acc Acc Acc Acc Acc …
Acc Acc Acc Acc Acc Acc …
No Acc Acc No Acc Acc …
Acc No Acc No Acc No …
No No Acc Acc No No …
… … … … … … …
No No No Acc No Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …
Acc Acc Acc Acc Acc Acc …
Acc Acc Acc Acc Acc Acc …
No Acc Acc No Acc Acc …
Acc No Acc No Acc No …
No No Acc Acc No No …
… … … … … … …
No No No Acc No Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …
Acc Acc Acc Acc Acc Acc …
Acc Acc Acc Acc Acc Acc …
No Acc Acc No Acc Acc …
Acc No Acc No Acc No …
No No Acc Acc No No …
… … … … … … …
No No No Acc No Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …
Acc Acc Acc Acc Acc Acc …
Acc Acc Acc Acc Acc Acc …
No Acc Acc No Acc Acc …
Acc No Acc No Acc No …
No No Acc Acc No No …
… … … … … … …
No No No Acc No Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …
Acc Acc Acc Acc Acc Acc …
Acc Acc Acc Acc Acc Acc …
No Acc Acc No Acc Acc …
Acc No Acc No Acc No …
No No Acc Acc No No …
… … … … … … …
No No No Acc No Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …
Acc Acc Acc Acc Acc Acc …
Acc Acc Acc Acc Acc Acc …
No Acc Acc No Acc Acc …
Acc No Acc No Acc No …
No No Acc Acc No No …
… … … … … … …
No No No Acc No Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc

No

Acc
No

No Acc

Acc No No Acc Acc No …
Acc Acc Acc Acc Acc Acc …
Acc Acc Acc Acc Acc Acc …
No Acc Acc No Acc Acc …
Acc No Acc No No …
No No Acc Acc No No …
… … … … … … …
No No No Acc Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc

No

No

Acc

Acc

No

No

…
Acc …

Acc No No Acc Acc No …
Acc Acc Acc Acc Acc Acc …
Acc Acc Acc Acc Acc Acc …
No Acc Acc No Acc Acc …
Acc No Acc No No …
No No Acc Acc No …
… … … … … … …
No No No Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

No

Acc

…
…

Acc

No

No

Acc

Acc

No

…
…

Acc No No Acc Acc No …
Acc Acc Acc Acc Acc Acc …
Acc Acc Acc Acc Acc Acc …
No Acc Acc No Acc Acc …
Acc No Acc No No …
No No Acc Acc No …
… … … … … …
No No No Acc

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

…
…

No

Acc

…
…

Acc

No

No

Acc

Acc

No

Acc No No Acc Acc No …
Acc Acc Acc Acc Acc Acc …
Acc Acc Acc Acc Acc Acc …
No Acc Acc No Acc Acc …
Acc No Acc No No …
No No Acc Acc No …
… … … … … …
No No No Acc

No TM has
this behavior!

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

…
…

No

Acc

…
…

Acc

No

No

Acc

Acc

No

Acc No No Acc Acc No …
Acc Acc Acc Acc Acc Acc …
Acc Acc Acc Acc Acc Acc …
No Acc Acc No Acc Acc …
Acc No Acc No No …
No No Acc Acc No …
… … … … … …
No No No Acc

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

…
…

No

Acc

…
…

Acc

No

No

Acc

Acc

No

Acc No No Acc Acc No …
Acc Acc Acc Acc Acc Acc …
Acc Acc Acc Acc Acc Acc …
No Acc Acc No Acc Acc …
Acc No Acc No No …
No No Acc Acc No …
… … … … … …
No No No Acc

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

…
…

No

Acc

…
…

Acc

No

No

Acc

Acc

No

Acc No No Acc Acc No …
Acc Acc Acc Acc Acc Acc …
Acc Acc Acc Acc Acc Acc …
No Acc Acc No Acc Acc …
Acc No Acc No No …
No No Acc Acc No …
… … … … … …
No No No Acc

“The language of all
TMs that do not accept

their source code.”

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

…
…

No

Acc

…
…

Acc

No

No

Acc

Acc

No

Acc No No Acc Acc No …
Acc Acc Acc Acc Acc Acc …
Acc Acc Acc Acc Acc Acc …
No Acc Acc No Acc Acc …
Acc No Acc No No …
No No Acc Acc No …
… … … … … …
No No No Acc

{ ⟨M⟩ | M is a TM that
does not accept ⟨M⟩ }

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Diagonalization Revisited
● The diagonalization language, which we

denote LD, is defined as
LD = { ⟨M⟩ | M is a TM and M does not accept ⟨M⟩ }

● We constructed this language to be
different from the language of every TM.

● Therefore, LD ∉ RE! Let’s go prove this.

LD = { ⟨M⟩ | M is a TM and M does not accept ⟨M⟩ }

Theorem: LD ∉ RE.

Proof: Assume for the sake of contradiction that LD ∈ RE. This
means that there is a recognizer R for LD.

Now, focus on what happens if we run recognizer R on its own
encoding (that is, running R on ⟨R⟩). Since R is a recognizer for LD,
we see that

R accepts ⟨R⟩ if and only if ⟨R⟩ ∈ LD.

By definition of LD, we know that

⟨R⟩ ∈ LD if and only if R does not accept ⟨R⟩.

Combining the two above statements tells us that
 R accepts ⟨R⟩ if and only if R does not accept ⟨R⟩.

This is impossible. We’ve reached a contradiction, so our
assumption was wrong, and so LD ∉ RE. ■

Regular
Languages CFLs

All Languages

R RE

LD

ATM

HALT

What This Means
● On a deeper philosophical level, the fact that non-

RE languages exist supports the following claim:
There are statements that
are true but not provable.

● Intuitively, given any non-RE language, there will
be some string in the language that cannot be
proven to be in the language.

● This result can be formalized as a result called
Gödel's incompleteness theorem, one of the
most important mathematical results of all time.

● Want to learn more? Take Phil 152 or CS154!

What This Means
● On a more philosophical note, you could interpret

the previous result in the following way:
There are inherent limits about what

mathematics can teach us.
● There's no automatic way to do math. There are

true statements that we can't prove.
● That doesn't mean that mathematics is worthless.

It just means that we need to temper our
expectations about it.

Where We Stand
● We've just done a crazy, whirlwind tour of computability

theory:
● The Church-Turing thesis tells us that TMs give us a

mechanism for studying computation in the abstract.
● Universal computers – computers as we know them – are not

just a stroke of luck. The existence of the universal TM ensures
that such computers must exist.

● Self-reference is an inherent consequence of computational
power.

● Undecidable problems exist partially as a consequence of the
above and indicate that there are statements whose truth can't
be determined by computational processes.

● Unrecognizable problems are out there and can be discovered
via diagonalization. They imply there are limits to mathematical
proof.

The Big Picture

DFA

NFA

Regex

CFG Decider

Recog-
nizer

Verifier

REG
CFL

R
RE

Where We've Been
● The class R represents problems that can be

solved by a computer.
● The class RE represents problems where “yes”

answers can be verified by a computer.
The mapping reduction can be used to find
connections between problems.

Where We're Going
● The class P represents problems that can be

solved efficiently by a computer.
● The class NP represents problems where “yes”

answers can be verified efficiently by a
computer.

Next Time
● Introduction to Complexity Theory

● Not all decidable problems are created
equal!

● The Classes P and NP
● Two fundamental and important complexity

classes.
● The P NP Question≟

● A literal million-dollar question!

Appendix: Verifiers and RE Languages

Theorem: Let L be a language. Then
L ∈ RE if and only if there is a

verifier V for L.

Where We’ve Been

NFA Regex

State Elimination

Thompson’s Algorithm

Where We’re Going

Verifier Recognizer

Try all certificates

Enforce a step count

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check an answer”

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

"Check an answer"

ε a b aa ab ba bb aaa aab aba abb baa …

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

"Check an answer"

ε a b aa ab ba bb aaa aab aba abb baa …

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

"Check an answer"

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

"Check an answer"

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

"Check an answer"

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

"Check an answer"

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

"Check an answer"

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

"Check an answer"

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

"Check an answer"

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

"Check an answer"

ε a b aa ab ba bb aaa aab aba abb baa …

Verifiers and RE

● Theorem: If there is a verifier V for a language
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

"Check an answer"

Verifiers and RE

Verifiers and RE
● Theorem: If there is a verifier V for a language

L, then L ∈ RE.
● Proof goal: Given a verifier V for a language L,

find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

"Check an answer"

Verifiers and RE
● Theorem: If there is a verifier V for a language

L, then L ∈ RE.
● Proof goal: Given a verifier V for a language L,

find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

"Check an answer"

Verifiers and RE
● Theorem: If there is a verifier V for a language

L, then L ∈ RE.
● Proof goal: Given a verifier V for a language L,

find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

"Check an answer"

Verifiers and RE
● Theorem: If there is a verifier V for a language

L, then L ∈ RE.
● Proof goal: Given a verifier V for a language L,

find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

"Check an answer"

Verifiers and RE
● Theorem: If there is a verifier V for a language

L, then L ∈ RE.
● Proof goal: Given a verifier V for a language L,

find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

"Check an answer"

Verifiers and RE
● Theorem: If there is a verifier V for a language

L, then L ∈ RE.
● Proof goal: Given a verifier V for a language L,

find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

"Check an answer"

Verifiers and RE
● Theorem: If there is a verifier V for a language

L, then L ∈ RE.
● Proof goal: Given a verifier V for a language L,

find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

"Check an answer"

Verifiers and RE
● Theorem: If there is a verifier V for a language

L, then L ∈ RE.
● Proof goal: Given a verifier V for a language L,

find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

"Check an answer"

Verifiers and RE
● Theorem: If there is a verifier V for a language

L, then L ∈ RE.
● Proof goal: Given a verifier V for a language L,

find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

"Check an answer"

Verifiers and RE
● Theorem: If there is a verifier V for a language

L, then L ∈ RE.
● Proof goal: Given a verifier V for a language L,

find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

"Check an answer"

Verifiers and RE
● Theorem: If there is a verifier V for a language

L, then L ∈ RE.
● Proof goal: Given a verifier V for a language L,

find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

"Check an answer"

Verifiers and RE
● Theorem: If there is a verifier V for a language

L, then L ∈ RE.
● Proof goal: Given a verifier V for a language L,

find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

"Check an answer"

Verifiers and RE
● Theorem: If there is a verifier V for a language

L, then L ∈ RE.
● Proof goal: Given a verifier V for a language L,

find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

"Check an answer"

Verifiers and RE
● Theorem: If V is a verifier for L, then L ∈ RE.
● Proof sketch: Consider the following program:

If w ∈ L, there is some c ∈ Σ* where V accepts ⟨w, c⟩.
The function isInL tries all possible strings as
certificates, so it will eventually find c (or some other
working certificate), see V accept ⟨w, c⟩, then return
true. Conversely, if isInL(w) returns true, then there
was some string c such that V accepted ⟨w, c⟩, so we
see that w ∈ L. ■

bool isInL(string w) {
 for (each string c) {
 if (V accepts w, c) ⟨ ⟩ return true;
 }
}

Verifiers and RE
● Theorem: If L ∈ RE, then there is a

verifier for L.
● Proof Goal: Beginning with a recognizer

M for the language L, show how to
construct a verifier V for L.

Verifiers and RE
● Theorem: If L ∈ RE, then there is a verifier for L.
● Proof sketch: Let L be a RE language and let M be a recognizer

for it. Consider this function:

Note that checkIsInL always halts, since each step takes only finite
time to complete. Next, notice that if there is a c where
checkIsInL(w, c) returns true, then M accepted w after running for
c steps, so w ∈ L. Conversely, if w ∈ L, then M accepts w after
some number of steps (call that number c). Then checkIsInL(w, c)
will run M on w for c steps, watch M accept w, then return true. ■

 bool checkIsInL(string w, int c) {
 TM M = /* hardcoded version of a recognizer for L */;
 set up a simulation of M running on w;
 for (int i = 0; i < c; i++) {
 simulate the next step of M running on W;
 }
 return whether M is in an accepting state;
 }

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165

